Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics.
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
I know you are asking for something different, but since there are already a few good answers, allow me to instead to reject the premise and give you a different.
It's not impossible to implement an AI solution within the context your provided. The problem is that it's going to be expensive. However, you can offer to deliver something smaller, focus on the smallest but valuable contribution you can make. While cleaning up the data is still going to be a hell of task, if the scope is small enough it can be achievable. Then, you can communicate the difficulty to scale due to data issues which can help management undestand the importance of prioritizing data quality.
If you have a bunch of sales data, maybe you can focus on deriving purchase patterns and build a simple recommendations engine. If you want to focus on marketing, you could try lead classification. Ideas depend on the domain of the company you work for.
This is where we get the fun part of definitions. Depending on what people think AI is this aren't AI. Most people mean GEN-AI aka the new fancy shiny thing. These are boring old machine learning, data science, statistical learning, data mining etc. (depending on your definition)