Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics.
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
I feel like you want to but binary data into text. You may be interested in base64, or base32 for easier human processing.
Example of short low bitrate Opus audio in base64:
T2dnUwACAAAAAAAAAAAypxK0AAAAAG4HHqwBE09wdXNIZWFkAQGcAMBdAAAAAABPZ2dTAAAAAAAAAAAAADKnErQBAAAAWb8XtAG5T3B1c1RhZ3MNAAAATGF2ZjU3LjU2LjEwMQYAAAAdAAAAZW5jb2Rlcj1MYXZjNTcuNjQuMTAxIGxpYm9wdXMdAAAAVElUTEU9TmV2ZXIgR29ubmEgR2l2ZSBZb3UgVXASAAAAQVJUSVNUPVJpY2sgQXN0bGV5IAAAAEFMQlVNPVdoZW5ldmVyIFlvdSBOZWVkIFNvbWVib2R5CQAAAFlFQVI9MjAwNw8AAABEQVRFPTIwMDctMDYtMTFPZ2dTAACAuwAAAAAAADKnErQCAAAAKjsEJTIQFA8SERISFBQTEBARDxAUEhoQEw4SEQ8MDxETERESExgSEQ8LDxANCw0MDxAREhEREAiFgrfBwpjwLVZcCVgqmGAImEP/bxA+LnLkHbRYkSA5ZpTmIAiYQFTPtTNZFp3Z6utyQAiYDl7gsRKYWq8Xvkjie5T9oAiXmJQHdPPon60oDHQSImrECJf5qIXFWDf19lZemxKQRGdjCL0cZ2ArYBQwWThfc14JZmLgCL0c9XXa8WkXUeY16P6UCTutLsgIvRdo2sChsZd8GXao22NBdmw3gAiX4+0TwmGf+tNeAQVubRTNUTQIl4wJTHzJ+ahzgb9S4HNgCJdJZieBkXIV3TBQnlDn5AiYQyxiLbwoJOQ1PMkCs994CIXqR2jXreOteWcOEDSQCIXoiq24lEVfa2aWDzIDwAiYOTvHHfOs80gRhiiaRSI/IYjACJfD2Yh5/my3kw97vQarOqJ8CLzRs2OU4wAUOysUIipNg43epqfSv9MrE6AIhemYmtZV3I15XB0EeNSACJhMOrgqmX79NzifpntZnjmHOgiYQvk3LZ5CXUjRES+mCJg/zveP4hk/ChOtKJ263SOQCJfpdWwXFxmvQHLlLiHUDYAIl3W25Ozgivv/uqcMmrgIl5jcaT8eNifXLfYImAQ4HytikC2ddhVTgukImEx6+5jd913A0T/nDsKG7AiYQKXZ+q+r2MJYuuY8D17UT6AIl/TIkaEDNE69y/6UcyFqgAiYOnzIFdiltd+wtPRtFHKqCJg6g0yr8yrW6nhoBuZFeB2gCJg3Z7uUpIkemE8EcMPWpP+8wAi89aMQsIg4gFBIIfpN+09t2NGxVF+kgAiF4Jqy9En+HQ6rg2yq0MwOMAiYH2H7H+iBd+gLSbKJG0LACJgfYNXml2EN1I6lqh2kCJfj/SI1p4TY/IcIP608nbdPXGXNMSX1peQIl3X6sAogIsZNnVsPwI2ACJfMKKeOYJke/kSAQAg/up+Jr8cEf13gCD+snl1/889pib+NYAg/pQm0ejuT3LRcoAiXSII8GB7RH/lkSLLfCwiXfFrpwVSD0QbyeFSenbgImCv7WrHyvRMRL+SuSCnRngiYQ7Zq5jWcvbRM9oFYoBVsIAi9N2HfQm7cnl39GswZyOTACL0SlXuTqsngkH/rptuH4XgIl/M/HtF4vZX21HTSoCCwT2dnUwAEKHMBAAAAAAAypxK0AwAAANX1l84xEhQSEhANEA4OEhAQEQ8VEQ8RERESEhIQFhITDBQREA8UEBASEg4ODg8LDg4PDg4ODgiX/u9K41s2pcljdZKJYGjP8AiX1Ps0+Nk44SulnhECZx7dqF7ACJhDbixWCdWc8QTubNYavGYQCJhDbN8bHJNVDBVK3Ou8bJSYCJhAkcTrs+Hoo0j/NjWiTAiYNvZYO2G38M/QX/4Il/M/gOjDGujc75MV+XdACJfuF07Xf6m3bGYTQHgIl9ZHEZFJtmYbnBt8CAiYGfQU3+lWiu1OjJhWm+56gAiX5Ezbnz4xec7hH4ElAoAIl7i7/mIjSPYvzaRTMcrgCJeTCNHOb4d1eV5mVOOJzSQIl1DrPWBltTfa+beKQYQIvKWXNRhNqNeBgjp2brO7HQ5IG4AImCSvMRo/K0iqREeniFGxYAiYObxPNgbk0p1rYBNJgAiYHXfRKpaUeVGmX1b+E512CJgdVUGsH4L1WqqRY/ulecAImCs3IkXV5qYqoLJjq8eG4AiYNzw2qK/XrPFiv1sAtdYrQAiYEgdj3jIre7Qv5Ndqrf8RoAiYN25s8MaPLLdVmO0h5zCepgiYH26t376eV1Ti3UzByfgIvO3ddkCI3awYTtEA7CD6J7o5mVDACLzIvnerP+iLSBGWpE7/Pp0gCLy+Zam4p4w2TXLcTR2xsGofBwi8qBFWA26uwJf6wAiYPXis+lJaUdx9yEfN5gIIcTyyCJgfF5Ye2gjg4NvkNp3t0TwImBsdrOW46dbAxv815ydACLzyTK6YvBKbmMR4ooXLCL/2ZN5MR8qAdpZPAiC5pz1HwiAIvJTAzDB12AlfQa3RgayuCLx1WURkB9TzegsGTEu8hAi8do94abB6QAEdtF/zBmPFgAi8VWFPLdwVsm3JLUKVsnL+gAg/rSMGtwix5fVYC0chCJdE/GKTaNrGM65nrEAIP57C75inzTAv2pNxQAg/nt4Ng0NicXIVewXjaggGdIPFO1Bz9ONQCD+spQ38pmv0v/z+vJgIP6Q/CbA8S66sdmw6RAg/lxCY1Pz4o40esMI46QiXT2orWwQTzlm1yi1xCJdm5HpuqfXi+2ecMoAIl0BYxASzK8u8/IVytQg/pOSmSHqD1dPmz8Cg
Is that what you are looking for?
Ya, I'm just amazed at how audio is able to be digitally represented
This is not unique to just audio files. What you’re seeing is a readable representation of binary (or raw) data. This will happen if you open an image, zip, or other non-text files.
Fun Fact: Microsoft Office’s .docx file is actually a zip file containing mostly plain text files in the XML format (XML is a markup language similar to HTML, and is used for describing data). You could theoretically unarchive a .docx file and modify the texts files by hand, and then rearchive the files back to .docx. Just be sure to back the file up before doing so. 😉
Data essentially are 1’s and 0’s (zeros) that are arranged in such a way that a program can interpret the data to be used by the program.
You’ve already seen the format that audio files get saved in. They are meant for music players, and as long as the codecs (a way to encode and decode data into a specific format for storage and playback) are supported, your music player will have no problem reading the contents of the file. Text editors will do their best to display plain text, and because text has a limited range of characters it can render, a lot of the data of raw files cannot be displayed. This is why if you opened an audio file in a text editor, and edited it, the file would be ruined. Same for images, zips, and exes.
If you want to see your binary data as text, you should use a hex editor. A hex editor will render each bit of data in hexadecimal format (0 through 16, where 11 - 16 are shown as the letters A - F). Hex editors also then attempt to show the raw data as text too, so you get to see the data in a safe way. They also allow you to change the values of the data, but unless you know what you’re doing, you risk damaging the file and making it unreadable by its application.
You've hit on half the magic!
You're talking about how the information is encoded, and the other side is how it can be decoded and turned back into analog sounds.
There's quite a bit at play here, but it's pretty well documented out in the world. You might want to read about audio encoding, or codecs
Its just so incredible to me that plaintext can actually represent a real piece of sound to be rendered and that can be rendered exactly the same by any device (speaker quality/processing power aside)
For the second time in a few days I'm compelled to recommend a series on digital audio and CDs done by Alec on his youtube channel Technology Connections. He explains quite well how digital audio works.