Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics.
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
Fusion reactors that produce all the (electrical) power we need.
This is the big one. With infinite energy you can basically do matter transmutation and end most forms of commodity scarcity.
I think the "promise" of fusion is a huge misunderstanding.
I mean we already have a nearly infinite source of clean energy, it's called fission. The only difference between fission and fusion is that fusion will be much more expensive.
If you want a truly unlimited source of energy, we have those too, they're wind and solar.
Seriously though, the expectations for fusion are completely rediculous, when we finally do get it working, it will be the most expensive form of energy ever concieved. If the reactors use the standard method of generating energy, heat capture to run a turbine, it will also require enormous amounts of beryllium as part of the "blanket" around the reactor. How much beryllium will be needed? In the whole world, we probably have enough beryllium for 4 grid scale reactors, the cost of which would be astronomical.
Here's the worst part, over time those blankets would absorb neutrons, the materials would degrade and eventually the now radioactive blanket would have to be disposed of and replaced.
The tldr is this - tokamak and stellerator style fusion reactors work great in theory, they will probably successfully make sustainable fusion reactions quite soon. But they may never generate electricity in practice, they're a logistical and economical nightmare.
I do think fusion could make a fantastic spacecraft engine however, I expect that will be a huge application.