this post was submitted on 27 Dec 2024
375 points (95.2% liked)

Technology

60774 readers
3599 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 1 points 3 weeks ago* (last edited 3 weeks ago) (1 children)

A hypercomputer has its own class of unsolvable problems, I agree. That doesnt mean that a hypercomputer cannot exist.

[–] [email protected] 1 points 3 weeks ago (1 children)

You know what? I'm going to plant a nuke under your ass: Turing machines can't exist, either. Any finite machine can be expressed as a DFA. We're nothing but a bunch of complicated regexen.

This whole time we were talking about potentiality, not reality; in terms that are convenient theory, not physics. I see no reason to extend potentiality to uncountable infinities when we can't even exploit countable infinity.

Side note, and this might actually change my mind on things regarding "Is R all that we'll ever need": If people manage to get an asymptotic speedup out of quantum computers. The question is whether the parallelism inherent in operations on qbits is eaten up by noise, more or less the more states you load onto the qbits, the more fuzzy the results get, because the universe has a maximum amount of computational oomph it spends on a particle or per unit volume or whatever the right measure is. Of course, before we'd need to move past R we'd first have to load an actually infinite number of states into a qbit and I don't really see that happening. A gazillion? Doubtful, but thinkable. An infinite number in finite time? Not while we have fat fingers typing away on macroscopic keyboards.

[–] [email protected] 1 points 3 weeks ago (1 children)

Turing machines can’t exist, either.

Oh no! You got me there!

Why do you need uncountable infinities for hypercomputers, though?. I see that Martin Davis criticism has to do with that approach, and I agree this approach seems silly. But, it doesnt seem to cover all potential fronts for hypercomputers. Im not talking about current approaches to quantum computing either. What if some yet unknown physical law makes arrangements of particles somehow solve the first order logic validity problem, which is also not in R? Doesnt involve uncountable infinity at all. Again, im not saying its possible, just that theres no purely logical proof of impossibility, thats all.

[–] [email protected] 1 points 3 weeks ago (1 children)

first order logic validity problem

Validity is RE (semidecidable), Satisfiability is undecidable.

How do we figure out that your fancy new law is actually the oracle you claim it is? It could be lying to us, to establish the thing as an oracle we'd have to be able to either inspect it or unit-test it over the whole infinite range.

[–] [email protected] 1 points 3 weeks ago (1 children)

Right, validity is semidecidable, just like the halting problem.

We might never know for certain that any natural law is true, we might never be certain that that oracle actually solves validity. But that doesnt prevent the oracle from working. My point is that its existence is possible, not that we will ever be able to trust it.

Besides, we dont know that the physical laws we work with today are true, but we nevetheless use them for practical purpuses all the time.

[–] [email protected] 1 points 3 weeks ago (1 children)

I mean if the point is that we know that we know nothing then I'll agree.

[–] [email protected] 1 points 3 weeks ago (1 children)

Not my point... and you know it. My point is that even if we consider that proven theorems are known facts, we still dont know if hypercomputers are infeasible. We know, however, that i'll never write python code that decides Validity because it is not (classically) decidable. But we have no theorems on the impossibility of hypercomputation.

[–] [email protected] 1 points 3 weeks ago (1 children)

Back to the context though: If the brain can access it, why would AGI be unable to?

[–] [email protected] 1 points 3 weeks ago

Never said AGI would be unable to.