this post was submitted on 27 Dec 2024
375 points (95.2% liked)
Technology
60774 readers
3649 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Oh no! You got me there!
Why do you need uncountable infinities for hypercomputers, though?. I see that Martin Davis criticism has to do with that approach, and I agree this approach seems silly. But, it doesnt seem to cover all potential fronts for hypercomputers. Im not talking about current approaches to quantum computing either. What if some yet unknown physical law makes arrangements of particles somehow solve the first order logic validity problem, which is also not in R? Doesnt involve uncountable infinity at all. Again, im not saying its possible, just that theres no purely logical proof of impossibility, thats all.
Validity is RE (semidecidable), Satisfiability is undecidable.
How do we figure out that your fancy new law is actually the oracle you claim it is? It could be lying to us, to establish the thing as an oracle we'd have to be able to either inspect it or unit-test it over the whole infinite range.
Right, validity is semidecidable, just like the halting problem.
We might never know for certain that any natural law is true, we might never be certain that that oracle actually solves validity. But that doesnt prevent the oracle from working. My point is that its existence is possible, not that we will ever be able to trust it.
Besides, we dont know that the physical laws we work with today are true, but we nevetheless use them for practical purpuses all the time.
I mean if the point is that we know that we know nothing then I'll agree.
Not my point... and you know it. My point is that even if we consider that proven theorems are known facts, we still dont know if hypercomputers are infeasible. We know, however, that i'll never write python code that decides Validity because it is not (classically) decidable. But we have no theorems on the impossibility of hypercomputation.
Back to the context though: If the brain can access it, why would AGI be unable to?
Never said AGI would be unable to.