this post was submitted on 15 Oct 2024
665 points (98.7% liked)

Technology

59347 readers
5956 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 133 points 1 month ago (10 children)

Crazy how quickly we've gone from "Nuclear is a dead technology, it can't work and its simply too expensive to build more of. Y'all have to use fossil fuels instead" to "We're building nuclear plants as quickly as our contractors can draft them, but only for doing experiments in high end algorithmic brute-forcing".

Would be nice if some of that dirt-cheap, low-emission, industrial capacity electricity was available for the rest of us.

[–] [email protected] 64 points 1 month ago (2 children)

Fun Times! Because everyone pays for the waste and when something goes wrong. Privatizing Profits while Socializing Losses. The core motor of capitalism.

[–] [email protected] 31 points 1 month ago* (last edited 1 month ago) (2 children)

The cleanup for fossil fuels is an order of magnitude more expensive, and an order of magnitude more difficult. It also impacts so many things that its true cost is impossible to calculate.

I'm aware of the issues with nuclear, but for a lot of places it's the only low/zero emission tech we can do until we have a serious improvement in batteries.

Very few countries can have a large stable base load of renewable energy. Not every country has the geography for dams (which have their own massive ecological and environmental impacts) or geothermal energy.

Seriously, we need to cut emissions now. So what's the option that anti-nuclear people want? Continue to use fossil fuels and hope battery tech gets good enough, then expand renewables? That will take decades. Probably 30+ years at the minimum.

[–] [email protected] 16 points 1 month ago* (last edited 1 month ago)

Nuclear should only be done by the state. Any commercial company doing nuclear HAS TO CARE FOR THE WASTE. It has to be in the calculation, but no on ecan guarantee 10000 years of anything. Same with fossils... execute the fossil fuel industry. They destroyed so much, they don't deserve to earn a single cent.

That funky startup is producing waste. Imagine a startup selling Asbestos as the new hot shit in 2024.

[–] [email protected] 1 points 1 month ago (3 children)

We’re talking 11 years for 7 “small” reactors. The first decade just to establish a business, but no real difference in the overall picture. How many years, decades after that to make a noticeable difference?

Meanwhile we’re building out more power generation in renewables every year. Renewables are already well developed, can be deployed quickly, and are already scaling up, renewables make a difference NOW.

[–] [email protected] 8 points 1 month ago (1 children)

You are totally ignoring their arguments. Not every place can do wind or solar or hydro. Like it’s simply not an option.

load more comments (1 replies)
[–] [email protected] 7 points 1 month ago* (last edited 4 weeks ago) (5 children)

Renewables cannot provide a reliable base load. Not unless you can have your solar panels in space where the sun always shines, we figure out tidal power, or you're lucky in terms of geography and either hydroelectric or geothermal work for you.

Solar power doesn't produce energy at night, wind doesn't always blow. You know the drill.

You completely sidestepped the entire crux of my comment.

We need a base load of energy to fill that gap, because batteries currently can't, and likely won't be for decades. Here are the options we have available:

  • nuclear power, which produces a waste that while trivial to store far away from people, will be radioactive for hundreds of years.

  • fossil fuels, which cause massive damage not only to the local environment, but to the planet, and cleanup is effectively impossible.

  • we put society on unpredictable energy curfews. At night the population can't use much energy. When there's a drop in wind or solar production, we cut people's energy off. Both political parties must commit wholeheartedly to this in order to make it viable. Our lives would become worse, but we'd not have either of the above problems.

Of those 3 options, I'd rather go with nuclear. What's your choice?

[–] [email protected] 4 points 4 weeks ago

Don't forget to add that nuclear waste created is absurdly small in volume.

load more comments (4 replies)
[–] [email protected] 5 points 1 month ago* (last edited 1 month ago) (7 children)

Right but how about actually addressing the question?

What about base load then. It's all well and good building shit tons of solar panels and wind farms but sometimes you need energy and the sun isn't shining and it isn't windy. What do you do then?

That's why we need base load and I'd rather the base load came from nuclear than from fossil fuels, as I'm sure you would too, but you seem to be anti-nuclear as well, so what do you want?

I'm so sick of you eco warrior types with absolutely no understanding of the problem. It's not as if the internet doesn't exist it's not as if you couldn't educate yourself if you wanted to. People are out here trying to educate you all about it, and you cope by ignoring them.

load more comments (7 replies)
[–] [email protected] 10 points 1 month ago (1 children)

Everyone pays for not using nuclear too, a thousand fold more so.

[–] [email protected] 2 points 4 weeks ago

Wind and solar are both cheaper forms of electricity than nuclear. It's not like this is a two-way race between nuclear and fossil fuels. Nuclear is a losing tech, right next to fossil fuels.

[–] [email protected] 19 points 1 month ago

Well, once the AI hype calms down and people realize the current approach won't lead to actual intelligence or "The Singularity", there may be quite some nuclear plants left over. That or they will be used to mine shitcoins.

[–] [email protected] 16 points 1 month ago (2 children)
  1. Tax them enough that they don't have the cash to just up and build their own personal-use nuclear powered, nation spanning infrastructure.

  2. Use those taxes to build a nation spanning nuclear infrastructure that everyone can use.

[–] [email protected] 4 points 1 month ago

I've got so many ads so far for how adding new taxes is bad even if it pays for good things, and all of the issues they are arguing about aren't even adding any taxes. Actually adding taxes seems like a great way to make political enemies, even though it's often the best tool there is for a thing.

[–] [email protected] 0 points 1 month ago

Eh, I would say investment into R&D should be encouraged and maybe allow tax write offs. Even of the end goal is a private power source. Once that R&D turns into workable, operable, sellable products, then tax the fuck out of them. Perhaps disallow making things that can be a boon to public infrastructure from being deem proprietary, so that it can be more easily adapted to public use.
I dunno, I'm typing from my couch after a few beers.

[–] [email protected] 9 points 1 month ago* (last edited 1 month ago) (6 children)

It's almost like the brand spanking new tech to make small nuclear reactors are extremely cost prohibitive and risky, and to lower the cost someone needs to spend money to increase supply.

load more comments (6 replies)
[–] [email protected] 5 points 1 month ago (1 children)

To be fair here, no one's certain this will be cost-effective either. The new techs make it worth trying though.

[–] [email protected] 8 points 1 month ago* (last edited 1 month ago) (2 children)

no one’s certain this will be cost-effective either

One of the great sins of nuclear energy programs implemented during the 50s, 60s, and 70s was that it was too cost effective. Very difficult to turn a profit on electricity when you're practically giving it away. Nuclear energy functions great as a kind-of loss-leader, a spur to your economy in the form of ultra-low-cost utilities that can incentivize high-energy consumption activities (like steel manufacturing and bulk shipping and commercial grade city-wide climate control). But its miserable as a profit center, because you can't easily regulate the rate of power generation to gouge the market during periods of relatively high demand. Nuclear has enormous up-front costs and a long payoff window. It can take over a decade to break even on operation, assuming you're operating at market rates.

By contrast, natural gas generators are perfect for profit-maximzing. Turning the electric generation on or off is not much more difficult than operating a gas stove. You can form a cartel with your friends, then wait for electric price-demand to peak, and command thousands of dollars a MWh to fill the sudden acute need for electricity. Natural gas plants can pay for themselves in a matter of months, under ideal conditions.

So I wouldn't say the problem is that we don't know their cost-efficiency. I'd say the problem is that we do know. And for consumer electricity, nuclear doesn't make investment sense. But for internally consumed electricity on the scale of industrial data centers, it is exactly what a profit-motivated power consumer wants.

[–] [email protected] 1 points 4 weeks ago (1 children)

One of the great sins of nuclear energy programs implemented during the 50s, 60s, and 70s was that it was too cost effective.

I don't see how any of this has any bearing on financial feasibility of power plants.

For what it's worth, before the late 90's there was no such thing as market pricing for electricity, as prices were set by tariff, approved by the Federal Energy Regulatory Commission. FERC opened the door to market pricing with its Order 888 (hugely controversial, heavily litigated). And there were growing pains there: California experienced rolling blackouts, Enron was able to hide immense accounting fraud, etc. By the end of the 2000's decade, pretty much every major generator and distributor in the market managed to offload the risk of price volatility on willing speculators, by negotiating long term power purchase agreements that actually stabilize long term prices regardless of short term fluctuations on the spot markets.

So now nuclear needs to survive in an environment that actually isn't functionally all that different from the 1960's: they need to project costs to see if they can turn a profit on the electricity market, even while paying interest on loans for their immense up front costs, through guaranteed pricing. It's just that they have to persuade buyers to pay those guaranteed prices, rather than persuading FERC to approve the tariff.

As a matter of business model, it's the same result, just through a different path. A nuclear plant can't get financing without a path to profit, and that path to profit needs to come from long term commitments.

It can take over a decade to break even on operation, assuming you're operating at market rates.

Shit, it can take over a decade to start operations, and several decades after that to break even. Vogtle reactors 3 and 4 in Georgia took something like 20 years between planning and actual operational status.

Now maybe small modular reactors will be faster and cheaper to build. But in this particular case, this is cutting edge technology that will probably have some hurdles to clear, both anticipated and unanticipated. Molten fluoride salt cooling and pebble bed design are exciting because of the novelty, but that swings both ways.

[–] [email protected] 2 points 4 weeks ago (1 children)

I don’t see how any of this has any bearing on financial feasibility of power plants

If you don't get a high ROI, you're not going to have lots of investors offering up their cash at low interest rates.

[–] [email protected] 0 points 4 weeks ago (1 children)

That was true in the 70's, too. You always needed a way to show that people would pay the long term prices necessary to cover the cost of construction.

The big changes since the 70's has been that competing sources of power are much cheaper and that the construction costs of large projects (not just nuclear reactors, but even highways and bridges and tall buildings) have skyrocketed.

There's less room to make money because nuclear is expensive, and cheaper stuff has come along.

[–] [email protected] 2 points 4 weeks ago (1 children)

You always needed a way to show that people would pay the long term prices necessary to cover the cost of construction.

Not when the federal government was just building them to generate fissile material and giving the electricity away after that.

There’s less room to make money because nuclear is expensive

Upfront costs are expensive. But operational and fuel costs are very low, per MWh. Long term, nuclear is cheaper.

[–] [email protected] 0 points 4 weeks ago

Upfront costs are expensive. But operational and fuel costs are very low, per MWh.

So take the upfront costs at the beginning and the decommissioning costs at the end, and amortize them over the expected lifespan of the plant, and add that to the per MWh cost. When you do that, the nuclear plants built this century are nowhere near competitive. Vogtle cost $35 billion to add 2 gigawatts of capacity, and obviously any plant isn't going to run at full capacity all the time. As a result, Georgia's ratepayers have been eating the cost with a series of price hikes ($700+ million per year in rate increases) as the new Vogtle reactors went online. Plus the plant owners had to absorb some of the costs, as did Westinghouse in bankruptcy. And that's all with $12 billion in federal taxpayer guarantees.

NuScale just canceled their SMR project in Idaho because their customers in Utah refused to fund the cost overruns there.

Maybe Kairos will do better. But the track record of nuclear hasn't been great.

And all the while, wind and solar are much, much cheaper, so there's less buffer for nuclear to find that sweet spot that actually works economically.

[–] [email protected] 1 points 4 weeks ago* (last edited 4 weeks ago) (1 children)

Nuclear plants cost a lot to produce but electricity from a nuclear plant sells for the same as electricity from anything else. Since many other options are cheaper to produce and maintain, nuclear is less cost efficient, not highly cost efficient as you claim. That's why it's not successful.

[–] [email protected] 1 points 4 weeks ago (1 children)

electricity from a nuclear plant sells for the same as electricity from anything else

The high production capacity drives down the market rate by flooding the retail market

[–] [email protected] 1 points 4 weeks ago* (last edited 4 weeks ago) (1 children)

It costs more to produce that electricy with nuclear than it does to produce it with other technology. Making lots of cost inefficient electricity is still making cost inefficient electricity.

[–] [email protected] 1 points 4 weeks ago (1 children)

It costs more to produce that electricy with nuclear than it does to produce it with other technology.

Electricity production costs of new power plants in €/MWh per the 2015 column are consistently some of the lowest across sources, with Hydro being the only serious competition.

[–] [email protected] 1 points 4 weeks ago* (last edited 4 weeks ago) (1 children)

The other table has newer studies than 2015, where nuclear is not cheaper, but you've only pointed out the column where they found it was cheaper 10 years ago. Wind and solar have gotten cheaper to produce, and nuclear more expensive. It is not cost efficient compared to other modern options.

[–] [email protected] 1 points 4 weeks ago (1 children)

The other table has newer studies than 2015, where nuclear is not cheaper

The only one that's in the ballpark is the most recent stats on Photovoltaics. And we've had a decade to improve breeder reactors and molten salt reactors since then.

Wind and solar have gotten cheaper to produce, and nuclear more expensive

Nuclear has not gotten more expensive.

[–] [email protected] 1 points 4 weeks ago* (last edited 4 weeks ago)

According to the article you have provided, it has... The first figure under Global Studies shows nuclear prices have increased, and the general trends of the various studies in the two tables show an increase over time.

[–] [email protected] 3 points 4 weeks ago

I still think it's too expensive, and this contract doesn't change my position. Google is committing to buying power from reactors, at certain prices, as those reactors are built.

Great, having a customer lined up makes it a lot easier to secure financing for a project. This is basically where NuScale failed last year in Idaho, being unable to line up customers who could agree to pay a sufficiently high price to be worth the development risk (even with government subsidies from the Department of Energy).

But now Google has committed and said "if you get it working, we'll buy power from you." That isn't itself a strong endorsement that the project itself will be successful, or come in under budget. The risk/uncertainty is still there.

[–] [email protected] 3 points 4 weeks ago* (last edited 4 weeks ago) (2 children)

One of the things with AI is that it's a largely constant load factor. Nuclear is really good for that.

However, I highly doubt any of these new nuclear plants are finished before the AI bubble bursts. SMRs haven't even been proven in practice yet, and this is the first good news they've had in a while. Restarting Three Mile Island isn't expected to work before 2028. The hype bubble could easily burst in the next year, and even if it doesn't, keeping it going to 2028 is highly unlikely.

So we'll probably have some new nuclear around that isn't going into AI, because those datacenters will be dead when the hype passes. Might as well use them, I guess.

[–] [email protected] 5 points 4 weeks ago

However, I highly doubt any of these new nuclear plants are finished before the AI bubble bursts.

Given the military applications of the technology, I don't think it is ever really going away. Consumer AI (those user facing image generators and chatbots, for instance) might lose funding. But Israel's Lavender AI is going to become a permanent fixture in our lives, as it's rolled out for the policing of more and more territory.

[–] [email protected] 2 points 4 weeks ago (1 children)

You don't think there's any chance that AI as it exists today might be just the start of a huge industry?

[–] [email protected] 3 points 4 weeks ago* (last edited 4 weeks ago)

As it exists now, no. The models are reaching their limit, and they aren't good enough. They can't absorb any more information than they have, and more training iterations aren't making them better. They'll do some useful things; a recent find of the longest black hole jet ever found was done in part from AI classification of astronomy data. It's going to get implemented into existing tools and that's about it. It won't be enough to justify the money that's already been dumped in.

Historically, the field has been very bursty. Lots of money gets dumped into it, it makes some big improvements, and then hits a wall. Funding dries up because it's not meeting goals anymore, and the whole thing goes into slumber for a decade or two. A new breakthrough eventually comes, and then money gets dumped in again. We've about maxed out what the last breakthrough can give us. I expect we'll need at least one more cycle of this before AGI works out.

[–] [email protected] 2 points 1 month ago (1 children)

Plus time. My perspective was that building a new nuclear power industry and any significant number of reactors would take too long: we need to have fixed climate change in less time.

So seven “small” reactors over the next eleven years ….. faster than I expected but still takes decades to make a noticeable difference.

[–] [email protected] 5 points 1 month ago

So seven “small” reactors over the next eleven years ……

Is more than we've built in the last 40. And, assuming energy demands continue to accelerate, I doubt they'll be the last seven reactors these companies construct.

[–] [email protected] 1 points 1 month ago (1 children)

I don’t think they’re even building many. The article uses the word “adopt” because they’re kinda reviving old power plants. Three Mile Island being one of them.

[–] [email protected] 6 points 1 month ago

I don’t think they’re even building many.

You might want to read the article.