this post was submitted on 25 May 2024
819 points (97.7% liked)
Technology
59287 readers
5759 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I understand the gist but I don't mean that it's actively like looking up facts. I mean that it is using bad information to give a result (as in the information it was trained on says 1+1 =5 and so it is giving that result because that's what the training data had as a result. The hallucinations as they are called by the people studying them aren't that. They are when the training data doesn't have an answer for 1+1 so then the LLM can't do math to say that the next likely word is 2. So it doesn't have a result at all but it is programmed to give a result so it gives nonsense.
Yeah, I think the problem is really that language is ambiguous and the LLMs can get confused about certain features of it.
For example, I often ask different models when was the Go programming language created just to compare them. Some say 2007 most of the time and some say 2009 — which isn’t all that wrong, as 2009 is when it was officially announced.
This gives me a hint that LLMs can mix up things that are “close enough” to the concept we’re looking for.