If you're reading the control flow, and the control flow tells you the first block isn't being entered, then it doesn't matter if the first block contains an early return or not, because it wasn't being entered. If it was being entered then you have to read it anyway to make sure it's not manipulating state or leaking resources.
To use your example: in subsequent reads, when I'm interested in the second block out of n, say during defect analysis, I can head straight to the second block in either case since control flow shows the first block was skipped - but in the case of early return from the second block I can stop reading, but in the case of a single return I need to read the flow for all subsequent n blocks and the business logic of any subsequent blocks that get entered. The early return is a guarantee that all subsequent blocks may be ignored.
To me this is also obvious. I've been doing this for quite a while and 95% of the time, reviewing and debugging code with a single return is far more tedious.
Have you stopped to consider why you can't explain it better? Perhaps the reason is because you're wrong.
Your toy example does not show the issue you think it shows. You've moved your cleanup block away from the context of what it's cleaning up, meaning that you've got variables leaking out of their scopes. Your cleanup code is now much more complex and fragile to changes in each of the blocks its cleaning up after.
You tried to use your toy example to show A is better, but then we showed that actually B is just as good. So fix your toy example to show what you actually want to say, because everything you said so far depends on you setting different standards for each scenario.