Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics. If you need to do this, try [email protected]
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
The nyquist shannon sampling theorem is the idea that as long as you capture 'samples' of signal (like the air pressure over time that is sound) faster that twice the period of the highest frequency component of the signal, all the information is captured and the aignal can be reproduced exactly (in theory).
maybe think of it like looking through a fence. As long as nothing on the other side of the fence is shorter than the spacing between posts, you can everything on the other side.
note that any file can be encoded as text with something like Base64
This does involve a cutoff point in the “maximum” frequency of a signal. Actual sound contains a much larger frequency spectrum than our audio file formats are designed to handle.
Actual sound also contains a larger frequency spectrum than our ears are designed to handle. Not throwing shade, our audio file formats also contain a narrower frequency spectrum than we can hear generally speaking.
I speak incompletely because I expect others to argue and complete the conversation. No shade perceived at all.