this post was submitted on 27 Feb 2024
165 points (87.7% liked)
Technology
59390 readers
4323 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I don't doubt that there are inherent differences between the brains of most men and women, but "we can measure these differences" and "these differences are inherent" are two different claims. I don't really get what the article is trying to get at by first claiming the latter and then walking back to the former.
~~btw can someone post the full PDF I can't access it via sci-hub yet~~
Edit: Also a tangential nitpick, but looking at their code I can tell that they're psychiatrists/neuroscientists first and programmers second lol
"CNN Block 1" comment used twice?
They skip layer 5? (Why even keep it in there??)
A linear layer with 2 outputs??? And then they do "
_, predicted = torch.max(outputs.data, 1)
" in the training script???? JUST USE 1 OUTPUT WITH A SIGMOID I'M BEGGING YOUAnd there's a lot going on in the "utilityFunctions.py" file lol
Good God that utility file.
For the record, I've earned some serious cash essentially chasing around data scientists and whipping their code into production readiness and deployability. So, carry on I guess. I've literally seen code like this that a company relies on, that runs one one dudes laptop (but he's a PhD and the brainz of the product! Lol)
I would guess clickbait
More like a proof of concept, since they didn't significantly improve upon the accuracy of their predictions compared to prior models.