To be honest, when I read the title I wondered if fire is what they were referring to. After all, heat is basically just particles bumping around... could be described as vibrating.
This paper refers to neither a common drug, nor vitamin. And if you’d read the paper, which is still in ‘prepublication’, you may have noticed that it refers to a novel process. Patients are generally, in my clinical experience averse to being placed in fires AND to being shot, even therapeutically. So I have to ask, is your purpose to promote XKCD? A Nobel pursuit, as far as I can tell. Or to sow discord in a scientific discussion? Which is annoying at best.
Aminocyanine molecules are already used in bioimaging as synthetic dyes. Commonly used in low doses to detect cancer, they stay stable in water and are very good at attaching themselves to the outside of cells.
Looks like an interesting choice, since they were already made to attach to cancer cells.
They work like an existing method, but with infrared light vs visible, which penetrates deeper into the body.
The thing about the used molecules is that they attach to the cancer more than other cells.
Apart from that you can concentrate the infrared light at the main clusters.
I'd say it is an improvement. Even if only the main clusters are destroyed it's noninvasive way to reduce the chance of mutation (less cancer cells means less chances for a mutation to gain chemo resistance).
I can destroy 99% of cancer cells in a lab using a hammer. The important part is whether you can do the same in a person without killing them.
Or fire.
To be honest, when I read the title I wondered if fire is what they were referring to. After all, heat is basically just particles bumping around... could be described as vibrating.
First thing that came to mind.
This paper refers to neither a common drug, nor vitamin. And if you’d read the paper, which is still in ‘prepublication’, you may have noticed that it refers to a novel process. Patients are generally, in my clinical experience averse to being placed in fires AND to being shot, even therapeutically. So I have to ask, is your purpose to promote XKCD? A Nobel pursuit, as far as I can tell. Or to sow discord in a scientific discussion? Which is annoying at best.
You'd think that it would be a might difficult getting a hammer into a body, but I salute you.
You don't need to. Just keep hammering away until you reach the cancer. Phase II trials start soon.
^Need volunteers.
I volunteer my biological father, I can remove his limbs with a turn of the century brass blowtorch if that helps the experiment.
I would argue it is actually quite easy to get a hammer into a body. Precision and accuracy are the larger concerns.
If you simply get a large enough hammer those concerns go away.
Or smaller, depending on point of entry.
You won't get it in there with that attitude.
The test was done on mice where half of them ended cancer free and I assume survived.
No lab mice survive the lab unfortunately.
Shouldn't have been so tasty.
Looks like an interesting choice, since they were already made to attach to cancer cells.
They work like an existing method, but with infrared light vs visible, which penetrates deeper into the body.
The thing about the used molecules is that they attach to the cancer more than other cells.
Apart from that you can concentrate the infrared light at the main clusters.
I'd say it is an improvement. Even if only the main clusters are destroyed it's noninvasive way to reduce the chance of mutation (less cancer cells means less chances for a mutation to gain chemo resistance).
I agree although the term used sounds like something stan lee coined.