this post was submitted on 05 Dec 2023
412 points (97.2% liked)

Technology

59390 readers
2546 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
 

Scientists develop mega-thin solar cells that could be shockingly easy to produce: ‘As rapid as printing a newspaper’::These cells could be laminated onto various kinds of surfaces, such as the sails of a boat to provide power while at sea.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 2 points 11 months ago (2 children)

The electrons are all already in the material. They are never created or destroyed just paired and unpaired with holes.

This video might help? from approx 5 minutes. https://www.youtube.com/watch?v=WfP5YdJn-c4

The energy comes from the sun, it excites electrons and holes, causing the cell to hold a small charge, that charge is the potential energy that drives the circuit. It is depleted by electrons flowing back into the P side from the circuit, they cannot go from the N side because of the field across the depletion zone. Recombinant electrons from the circuit can then be excited again, excess electrons in the N side flow out of the silicon into the load so that electrons can move from the load into the P side.

This all happens at once. In a very long time, eventually the very same electron that was originally excited by a photon will recombine in the depletion layer. There isn't any loss here.

[–] [email protected] 1 points 11 months ago

Here is an alternative Piped link(s):

https://www.piped.video/watch?v=WfP5YdJn-c4

Piped is a privacy-respecting open-source alternative frontend to YouTube.

I'm open-source; check me out at GitHub.

[–] [email protected] 1 points 11 months ago (2 children)

I am getting frustrated because i am pretty sure the qty of electrons is conserved so at some point equilibrium needs to be reached. I read this paper on diffusion lengths and i got confused so i started watching this older lecture about short and open circuit recombinations. My first impression is that the recombination rate (or qty of electrons coming back into the cell) depends on some thickness of material at the very least.

I was definitely wrong about how the whole loops work but that was me being dumb. Again, this is very out of my brain territory. I used to love this stuff though.

[–] [email protected] 2 points 11 months ago

I'm not sure I understand the confusion. The material thickness does matter in that thinner materials will resist current flow due to a lack of charge carriers meaning each must travel faster, which means that more charge separation is required for a given recombination rate or current.

If the charge required is too high (more than the potential difference across the depletion zone) then the build up will prevent charge separation after excitation. They will recombine in the depletion zone making a bunch of heat and burning out the cell.

Maybe that's the thing? super thin films under too much irradiation or load cooking themselves due to inability to move excited charges away fast enough?

[–] [email protected] 1 points 11 months ago

Here is an alternative Piped link(s):

short and open circuit recombinations

Piped is a privacy-respecting open-source alternative frontend to YouTube.

I'm open-source; check me out at GitHub.