this post was submitted on 13 Oct 2023
253 points (96.7% liked)
Technology
59390 readers
3596 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
It's too bad they can't fling the probe in the opposite direction once it's done with the sun. I know it's instruments are probably tuned specifically to take measurements of various solar phenomenon from close-up and probably aren't sensitive enough to be useful for any deep space science, but it'd be cool to use that speed to launch it on an escape trajectory and see how long it takes to catch up to the Voyager probes.
So, it doesn't work the way you think.
It's only going that fast because it's near the sun. The same way a satellite close to Earth needs to move faster than one farther away. You can't really use that velocity to go elsewhere. It had to lose a lot of energy to get as close to the sun as it is. It would need to gain that back to get to earth.
I'm really blanking on a way to explain this concisely and I can't explain orbital mechanics in a Lemmy post.
If you play Kerbal space program, you can definitely use that to get a very intuitive understanding of this concept.
Thanks! I didn't think about the fact that it'd lose velocity to gravity as it gets further away.
I wonder if you could slingshot a probe by firing it to fly by the sun and then shedding mass at its perihelion. The idea being that the craft would be mostly dead weight, increasing the force exerted on the craft by the sun's gravitational pull. Once you reach the perihelion, you eject the mass behind the craft so that there's less force acting on the craft as it moves away from the sun.
Yes, the Oberth effect means that firing a rocket at the periapsis changes your orbit more than at any other point in the orbit.