this post was submitted on 02 Apr 2025
54 points (86.5% liked)
Technology
68245 readers
4285 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related news or articles.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Actually, as to your edit, the it sounds like you're fine-tuning the model for your data, not training it from scratch. So the llm has seen english and chinese before during the initial training. Also, they represent words as vectors and what usually happens is that similiar words' vectors are close together. So subtituting e.g. Dad for Papa looks almost the same to an llm. Same across languages. But that's not understanding, that's behavior that way simpler models also have.
True! Models not trained on a specific language are generally bad at that language.
However, there are some exceptions, like a Japanese tune of Qwen 32B which dramatically enhances it Japanese, but the training has to be pretty extensive.
And even that aside… the effect is still there. The point it to illustrate that LLMs are sort of "language independent" internally, like you said.