Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics.
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either [email protected] or [email protected].
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email [email protected]. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
Y2038 is my "retirement plan".
(Y2K, i.e. the "year 2000 problem", affected two digit date formats. Nothing bad happened, but consensus nowadays is that that wasn't because the issue was overblown, it's because the issue was recognized and seriously addressed. Lots of already retired or soon retiring programmers came back to fix stuff in ancient software and made bank. In 2038, another very common date format will break. I'd say it's much more common than 2 digit dates, but 2 digit dates may have been more common in 1985. It's going to require a massive remediation effort and I hope AI-assisted static analysis will be viable enough to help us by then.)
How many UNIX machines in production are still running on machines with 32-bit words, or using a 32-bit time_t?
How much software is still running 32 bit binaries that won't be recompiled because the source code has been lost together with the build instructions, the compiler, and the guy who knew how it worked?
How much software is using int32 instead of time_t, then casting/converting in various creative ways?
How many protocols, serialization formats and structs have 32 bit fields?
Irrelevant. The question you should ask instead is: how many of those things will still be in use in 15 years.