this post was submitted on 10 Apr 2024
1296 points (99.0% liked)
Programmer Humor
19564 readers
1261 users here now
Welcome to Programmer Humor!
This is a place where you can post jokes, memes, humor, etc. related to programming!
For sharing awful code theres also Programming Horror.
Rules
- Keep content in english
- No advertisements
- Posts must be related to programming or programmer topics
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
The fun thing with AI that companies are starting to realize is that there's no way to "program" AI, and I just love that. The only way to guide it is by retraining models (and LLMs will just always have stuff you don't like in them), or using more AI to say "Was that response okay?" which is imperfect.
And I am just loving the fallout.
The fallout of image generation will be even more incredible imo. Even if models do become even more capable, training off of post-'21 data will become increasingly polluted and difficult to distinguish as models improve their output, which inevitably leads to model collapse. At least until we have a standardized way of flagging generated images opposed to real ones, but I don't really like that future.
Just on a tangent, openai claiming video models will help "AGI" understand the world around it is laughable to me. 3blue1brown released a very informative video on how text transformers work, and in principal all "AI" is at the moment is very clever statistics and lots of matrix multiplication. How our minds process and retain information is by far more complicated, as we don't fully understand ourselves yet and we are a grand leap away from ever emulating a true mind.
All that to say is I can't wait for people to realize: oh hey that is just to try to replace talent in film production coming from silicon valley
I see this a lot, but do you really think the big players haven't backed up the pre-22 datasets? Also, synthetic (LLM generated) data is routinely used in fine tuning to good effect, it's likely that architectures exist that can happily do primary training on synthetic as well.