Let's not nickel-and-dime the green transition. Nuclear energy has a role to play, and so do renewables. The most urgent thing now is to get as much electricity generation off fossil fuels as possible. Building nuclear power plants is an important part of this, especially in countries like China and India which would otherwise default to burning coal.
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
Energy generation that works most of the time is more expensive than energy generation that only works some of the time, big surprise. Mason problem is that we need energy all the time and currently can't store it on a grid level.
More like fission requires massive shielding, tight control of procedures, waste storage sites that don't exist, and in-depth inspections in order to remain safe.
Yeah, I don't disagree but it's a proven technology that can provide a baseline load for the grid. Something we can't yet do reliably with renewables
There are tons of options for that, mainly energy storage such as batteries, hydro, and green hydrogen. Nuclear is not needed and too expensive among other things.
Hydo is limited in where it can be used and where it can be used if often already is. Batteries can't yet provide a grid level base load. I don't know much about green hydrogen but there's usually a loss of energy when converting from one medium to another.
Look, I'm all for renewable energy, where it makes sense. When I lived in southern California, BLM had so many wildlife restrictions in place, even for off-roading it was kinda nuts. A lot of it dealt with tortoises. Shortly after moving out of state, they started building solar farms all over the place. They're massive multi dozens to hundreds of acres in size. Many of them in the same areas they got all worked up about for the tortoises...
Generating the power is only a third the battle. Still need to store and distribute that power. Factor in power demands etc.
What I'm trying to say is, as a species we need to get better. This is a good step. However, the power output of a single nuclear plant to the size shouldn't be overlooked. We should stop fossil fuel reliance. Nuclear is at this point very understood. Yes some bad accidents happened in the past.
Storing energy isn’t as difficult as it’s made out to be. There’s molten salt, water pumps, boiling/heated water, discarded batteries, even hauling weights up a tall tower.
I’d like to see every building with solar panels and a backup battery to decentralize the grid.
I have a feeling this is where the suburban and rural grids are going. Dense urban areas are likely still going to need power produced off site.
What I'm more interested in will be farms in whether they'll stay traditional producing food or convert solar farms where food production is not the main focus (see the hops farming solar panels for example).
Please do the maths on "lifting weights up a tall tower.
Actually no, I'll do it for you.
Let's raise a metric ton 10 storeys. A storey is about 3 meters, making that 1000kg going 30 meters up. Mass (1000kg) x g (9.81m/s² ≈ 10m/s²) x height (30m) is about 300,000 joules of energy. We don't use joules much, but they are the amount of energy you use is you draw 1w for 1 second. 300,000Ws. 3,600 seconds in an hour, so 83Wh.
Not kWh, Wh. You might run your TV for an hour.
You'd need to lift 100 tons 100 storeys to get it to kWh. 83kWh. A car battery worth of storage.
This is the reason pumped-hydro storage is a thing. To make lifting a mass a decent energy storage solution, you need a lot of mass. About the order of one lake of water. One plant I visited in Scotland has a reservoir of 10 million tons of water elevated 400 meters, to give it 7GWh of storage. That's a fairly small one, and 36 men died building it back in the 50s/60s.
Gravity storage needs BIG numbers.
It's not difficult, but it is expensive and inefficient. There are very few financially viable battery technologies on the market currently, and although incremental improvements are happening on that front, there are also roadblocks (lack of raw materials like cobalt, toxic metals, thermal runaway fire risks), we really need a big breakthrough before we'll see large adoption of batteries.
It's worth pointing out too that we aren't using newer designs as much, which incorporate inherently safe features.
It's actually ironic. If we built new reactors we could build breeder tractors to generate fuel for them from nuclear waste. This fear mongering of nuclear energy prevents us from reducing that number.
They're going with older designs for cost reasons. Per the article, you're taking something that is already not cost effective and proposing to make it even more expensive.
This is basically common knowledge now. CSIRO report pointed to similar conclusions for several years, at least since 2021 when I started to notice.
What is relevant to real life (since Australia probably never will get nukes) is that even assignning system costs only onto VRE, they are still almost the same LCoE in a 90% VRE system. This is again consistent with previous reports.
After Australia pass 100% VRE, exporting green hydrogen in the regional market will probably handle the last remaining flexibility needs. Exporting electricity directly to SE Asia is less likely but still a possibility.
Renewables cannot main grid frequency, which is crucial in America. We transmit AC power. You either accept nuclear or accept no electricity. This is fear mongering propaganda to keep us dependent on fossil fuels because that's the only other way to maintain grid frequency.
This article also specifically says IN AUSTRALIA. So it isn't even a comprehensive statement. We need nuclear. Get over it.
This is the best summary I could come up with:
The report says electricity generated by solar and on-shore wind projects is the cheapest for Australia, even when accounting for the costs of keeping the power grid reliable while they're integrated into the system in greater proportions over time.
It estimates the changing costs of electricity produced by coal, gas, solar, wind, nuclear, bioenergy, hydrogen electrolysers, and storage such as pumped hydro and batteries.
CSIRO's scientists say until recently, discussions about the potential cost of using nuclear energy in Australia have remained theoretical, with a lack of data from completed commercial projects hindering attempts to make worthwhile calculations.
This year's draft GenCost report also provides more data on the estimated "integration costs" for variable renewable technologies.
It says most new-build technologies, like renewables, can enter an electricity system and provide reliable power by relying on existing capacity already deployed, but as their share increases, which forces the retirement of existing flexible capacity, the system will find it increasingly difficult to provide reliable power supply without additional investment.
"Mind you, the integrated system plan was released last week and it did emphasise that although it is likely to be a renewable future, we'll still need gas as a supporting technology.
The original article contains 754 words, the summary contains 199 words. Saved 74%. I'm a bot and I'm open source!
Just read the article again and it's kind of suspicious the way the article ends by saying that natural gas will have to be part of the future energy mix. Seems like there might be some co-optation going on, or at least a failure to consider the costs of trying to eliminate greenhouse gas emissions from the power supply using just wind and solar.
"It's a good technology for filling in the gaps around renewables, as well as storage and other methods for making sure that power's still reliable..."
This does make some sense, like having a diesel generator in your home for the few times a year the power goes out. It's also useful for shutting up the, "sometimes the wind doesn't blow and there's no sun at night" crowd.
I eagerly await all the Nuclear fanboys to explain why this unfairly overestimates the cost of nuclear or was put out by the fossil fuel industry to … make renewables look good.