this post was submitted on 19 Feb 2025
1295 points (99.8% liked)
Technology
63010 readers
5108 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each other!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
- Accounts 7 days and younger will have their posts automatically removed.
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Verified electrical output, the answer is verified electrical power generated.
...as in we should measure power generation experiments by how much power they generated.
Isn't that obvious?
They weren't trying to generate electricity in this experiment. They were trying to sustain a reaction. As you said in another comment, they are different problems.
Converting heat to electricity is a problem we already understand pretty well since we've been doing it basically the same way since the first power plant fired up. Sustaining a fusion reaction is a problem we've barely started figuring out.
I don't think we do have a means of converting this heat energy into electrical energy right now. With nuclear we put radioactive rods into heavy water to create steam and drive turbines...
What's the plan for these fusion reactors? You can't dump them into water, nor can you dump water into them... I don't believe we have a means of converting the energy currently.
Even if we could dump water into them it would explosively evaporate because they run at 100 million degrees Celsius. That would be a very loud bang and whatever city they were in would be gone.
The walls get hot, you absorb the heat from the walls with a fluid. You use the fluid to heat water, you use the steam to drive a turbine, you use the turbine to turn a permanent magnet inside of a coil of wire. In addition, you can capture neutrons using a liquid metal (lithium) which heats the lithium, which heats the walls, which heats the water, which makes steam, which drives a turbine, which generates electricity.
If you poured water onto them they wouldn't explode. 100 million degrees Celsius doesn't mean much when the mass is so low compared to the mass of the water.