this post was submitted on 24 Jul 2024
436 points (97.2% liked)

Technology

59374 readers
3671 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 12 points 3 months ago* (last edited 3 months ago) (14 children)

provenance requires some way to filter the internet into human-generated and AI-generated content, which hasn’t been cracked yet

It doesn't need to be filtered into human / AI content. It needs to be filtered into good (true) / bad (false) content. Or a "truth score" for each.

We don't teach children to read by just handing them random tweets. We give them books that are made specifically for children. Our filtering mechanism for good / bad content is very robust for humans. Why can't AI just read every piece of "classic literature", famous speeches, popular books, good TV and movie scripts, textbooks, etc?

[–] [email protected] 6 points 3 months ago (10 children)

It doesn’t need to be filtered into human / AI content. It needs to be filtered into good (true) / bad (false) content. Or a “truth score” for each.

That isn't enough because the model isn't able to reason.

I'll give you an example. Suppose that you feed the model with both sentences:

  1. Cats have fur.
  2. Birds have feathers.

Both sentences are true. And based on vocabulary of both, the model can output the following sentences:

  1. Cats have feathers.
  2. Birds have fur.

Both are false but the model doesn't "know" it. All that it knows is that "have" is allowed to go after both "cats" and "birds", and that both "feathers" and "fur" are allowed to go after "have".

[–] [email protected] 3 points 3 months ago (8 children)

It's not just a predictive text program. That's been around for decades. That's a common misconception.

As I understand it, it uses statistics from the whole text to create new text. It would be very rare to output "cats have feathers" because that phrase doesn't ever appear in the training data. Both words "have feathers" never follow "cats".

[–] [email protected] 3 points 3 months ago* (last edited 3 months ago) (1 children)

and that is exactly how a predictive text algorithm works.

  • some tokens go in

  • they are processed by a deterministic, static statistical model, and a set of probabilities (always the same, deterministic, remember?) comes out.

  • pick the word with the highest probability, add it to your initial string and start over.

  • if you want variety, add some randomness and don't just always pick the most probable next token.

Coincidentally, this is exactly how llms work. It's a big markov chain, but with a novel lossy compression algorithm on its state transition table. The last point is also the reason why, if anyone says they can fix llm hallucinations, they're lying.

[–] [email protected] 1 points 3 months ago (1 children)

Coincidentally, this is exactly how llms work

Everyone who says this doesn't actually understand how LLMs work.

Multivector word embeddings create emergent relationships that's new knowledge that doesn't exist in the training dataset.

Computerphile did a good video on this well before the LLM craze.

[–] [email protected] 1 points 3 months ago* (last edited 3 months ago)

1 - a markov chain only takes previous tokens as input.

2 - It uses a function (in the mathematical sense, so same input results in same output, completely stateless) to generate a set of probabilities for what the next token might be.

3 - The most probable token is picked, else randomness (temperature) is inserted here to choose a different token occasionally.

an llm's internals, the part that's trained is literally the function used in step 2. You could have this function implemented a number of ways, ex you could build a huge table and consult it. Or you could generate it somehow. You could train a big neural network that takes previous tokens as input, and outputs probabilities of tokens as output. You then enumerate its outputs for every possible permutation of inputs and there's your table. This would take too much time and space, so we just run the function on-demand instead. Exact same result. It can be very smart and notice correlations, but ultimately it generates a (virtual) huge static table. This is a completely deterministic process. A trained NN is still a (huge) mathematical function. So the big network that they spend resources training is basically the function used in step 2.

Step 3 is the cause of hallucinations. It's the only nondeterministic part. And it's not part of the llm itself in any way. No matter how smarter the neural network gets, the hallucinations are introduced mainly in step 3. So no, they won't be solving the LLM hallucination problem anytime soon.

load more comments (6 replies)
load more comments (7 replies)
load more comments (10 replies)